[Article] Surface factor assessment in HCF for steels by means of empirical and non destructive techniques
نویسندگان
چکیده
During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a model can be useful in the goal of predicting turbine blade life, given a set of FDR data. © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of PCF 2016.
منابع مشابه
A review of non-destructive techniques for the detection of creep damage in power plant steels
The assessment of creep damage in steels employed in the power generation industry is usually carried out by means of replica metallography, but the several shortcomings of this method have prompted a search for alternative or complementary non-destructive techniques, ranging from ultrasonic to electromagnetic methods, hardness measurements and nuclear techniques. A critical review of the main ...
متن کاملSurface Hardness Measurment and Microstructural Characterisation of Steel by X-Ray Diffraction Profile Analysis
An X-ray diffraction line will broaden considerably when steels change into martensitic structure on quenching. The results presented in this paper show that X-ray diffraction technique can be employed for a rapid and nondestructive measurement of hardness of hardened steel. Measurement on various quenched and tempered steels showed that the breadth of its diffraction peak increased with increa...
متن کاملTransverse Hardness Photothermal Phase Imaging and Depth-profilometry of Heat Treated Steels
A method to image near-surface hardness profiles of heat-treated case-hardened steels using laser infrared photothermal radiometric phase imaging is described. It is shown that thermophysical and mechanical transverse inhomogeneity profiles in industrial case hardened steel samples are well correlated. Phase surface scanning imaging leads to a practical criterion for assessing transverse hardne...
متن کاملSynthesis of MgO Nanoparticales and Identificationof Their Destructive Reaction Products by 2-Chloroethyl Ethyl Sulfide
Nanocrystalline magnesium oxides were prepared by sol–gel method and were characterized by X-ray diffraction, N2-BET, SEM and infrared spectroscopy techniques. The results confirmed the formation of Nano- MgO materials with crystallite size in range of 5-20 nm and surface areas of 336-556m2/g. The product has been tested as destructive adsorbent for the decontamination of (2-chloroethyl) et...
متن کاملQuantitative measuring of pearlite in carbon steels using electromagnetic sensor
Non-destructive Eddy current (EC) technique has long been used to detect discontinuities in materials. Recently, its application has been extended to characterize materials microstructure. In order to identify different microstructures, four plain carbon steel bars with different chemical compositions (AISI 1015, 1035, 1045 and 1080) were used in annealed condition. The pearlite percentage, car...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017